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Abstract—The nuclei of vapour bubbles in pool boiling are usually assumed to be spheres of radius

Ry, the value of which depends upon the superheat of liquid. It is shown in this paper that the vapour

nucleus is a sphere only in the case of uniform superheat. If there is a temperature gradient the shape

of the active bubble nucleus is flattened. As a consequence the liquid superheat at the wall needed for
activation is greater than in the case of uniform superheat.

NOMENCLATURE
b, height of the nucleus;
k, a parameter, equation (27);
D, pressure;
Ps’ = (dP/dT)T=Ts;
r, co-ordinate;
R, radius of the cavity;
Ry, radius of the vapour nucleus;

Ri, Rz, main radii of curvature of the vapour
nucleus;
T, temperature of the liquid;

T, absolute saturation temperature;

AaT, superheat at the heated surface;

VI,  temperature gradient at the heated
surface;

pA co-ordinate;

B, contact angle;

Y, a parameter, equation (14);

3, boundary-layer thickness;

8, characteristic superheat of the nucleus;

p’, p’', mass densities of the liquid and of the
vapour, respectively;

o, surface tension;

@, angle between the surface of the

nucleus and the heated surface, at the
heated surface.

IN POOL BOILING the working period of an active
site on the heated surface consists of two parts.
In the first the vapour bubble is formed from the
initial nucleus. After the departure of the grown-
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up bubble the site is not active for a while, and
this period is called the waiting period. To
explain this phenomenon Hsu [1] has proposed
a model in which a vapour nucleus of radius R,
seated on the cavity of radius R., begins to be
active (that is, begins to grow) at the moment
when the temperature of the surrounding super-
heated liquid exceeds the temperature of the
characteristic superheat 6 due to the radius of the
nucleus R,,

¢y

After the departure of the bubble the colder
liquid approaches the wall. During the waiting
period the superheat of the liquid is initially
below the value ¢ at the place y = b, which the
vapour nucleus reaches (see Fig. 1). Therefore
the bubble does not grow, unless the superheat
at the place y = b exceeds the prescribed value 6.

Hsu’s hypothesis is 2 good explanation of the
existence of the waiting period, but has no
physical basis. One must ask why the activation
of a nucleus is governed by the superheat at the
place y = b, and why not at y = 0, that is on
the heated surface.

Note that the radius of the active nucleus is
evaluated from the formula (1), which is strictly
valid for uniform superheat of the liquid only.
Namely, the expression (1) is the solution of the
Laplace equation
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» c “RtR 2
in which we put
dp ~ p(T — Ty 3

For T = const. and (T — T;) = const. = 6, the
nucleus is spherical, that is Ry = Rz = Ry, and
equation (1) is obtained. In the conditions of
pool boiling, however, the temperature of the
liquid is a function of space and time, as pointed
out by Hsu [1]. Thence the temperature difference
(T — Ts) varies with the co-ordinate y and
influences the radii of the active nucleus, which
depend therefore not only upon the superheat
at the wall (which may be assumed constant),
but also upon the temperature distribution in the
vicinity of the active site (the cavity), and
consequently upon the momentary heat flux, or
temperature gradient, at the heated surface. The
greater the temperature gradient at the wall, the
greater must be the radius of the cavity to
produce bubbles, even at constant superheat of
the wall.
To analyse the phenomenon we put

Apmp,- (T — Te) = p,- ATHy) ()

where

00) =T =1 )

Using the expressions for the main radii of
curvature:
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Rl = —JT’(I + y’2)3/2’

Ry = — ;2(1 + YRz (6)

where y' = dy/dr, " = d2y/dr2, we obtain from
equation (2)

P pAT Y
P’ o 19(.y) - (1 + yt2)3/2

’

__y
1 + yue
The boundary conditions, which follow from the
sketch in Fig. 2, are

WR) =0, Y(R)=1gp, y0)=0 (8)

We confine ourselves to the analysis of the case
¢ = w/2. The angle ¢, as it can be seen from
Fig. 1, is usually different from the contact angle
B; it has to do with the microgeometry of the
heated surface.

In the case of ¢ = «/2 and uniform superheat
of the liquid (¥ = 1) the nucleus forms a hemi-
sphere of radius R, = R., and height b = R,.
If #(y) << 1 the shape of the nucleus resembles a
flattened spheroid. For a real spheroid we would

+ M

obtain
F2\1/2
R R
and the ratio of the radii of curvature,
R _y(d+y?) b2\

Fi1G. 2.
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varies from Rj/R; = 1 at the top (r = 0) to
Ri/R: = b2%/R? at the base (r = R.). The
arithmetical mean of the discussed ratio is

therefore
R b2 )
(Rz =t R2

We will solve the problem approximately using
instead of equation (2) the simplified equation

Pl__ P” Ap 1 Rl) ]
L A A = 12
ALl &) o

)

or
__Ry"
where
p' = p" RepAT 1
_ P p RepAl 14
L4 P o 1+ (Rl/Rg)m ( )

Putting y' = u, y' = udu/dy, we obtain by
integration

y
J& dy + const. =

0

where const. = 0, which follows from the
boundary conditions (8) for ¢ = #/2. Thus

-ge- JlEfo -] oo

and

1

Re a+ymr

¥

r= Ry — j~—~ v
2 VIR [ 8 dp)-2 — 1]
0

(7

where conditions (8) are already taken into
account. If r =0, that is y = b, it follows
y' = 0, whence

J (18)
° \/[(y’Rcfﬂdy)‘z - 1]

Y -
x|Pr=1 (19)

o t—
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From these equations the value of & should be
eliminated and as a result we obtain the re-
lationship Re = f(y/Rc). Note that for & = 1 the
result is ¥ = 1, which leads to the formula

20 P
p; -Rc * Pl — Pll
where for ¢ = n/2itis Rn = Re = b.

To discuss the case #(y) < | we must assume
a defined temperature distribution. To avoid
mathematical difficulties we analyse the simplest
case, as shown in Fig. 3. Thus

4T =

Yy
#=1-% for y<3§;
5 ys 20)
=0 for y > 6.
|
0
o 5
Y —
FiG. 3.

The following considerations are valid for
b < 3 only. Therefore

b 0 y2
J dy=y— 2% 0
0
and
b2
L (b - zs) ~1 22)

We use a new variable ¢, satisfving the equation

v

v, _ ¥\ _ 2 _ Y

R, (y 28) =1-£2= chﬂ dy. (23)
0
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SRR
and
dy = — 2R, tdt

Y V= @RpA =B W

Introducing (23) and (24) into equation (18) we
get finally after some rearrangement

(1 — ) dt
= ZJ V2 =By = QR = &y &)

Using furthermore the Legendre substitution
t=+/2.cosy (26)
and introducing the quantity

5 ~1/2
k= (i’ - 1)

we obtain from equation (25)

@n

1r/22 - s -1 d

wid

(28)

This integral may be expressed in terms of the
elliptic integrals of first and second kinds

¥
d
FOh) = | i

k2 sin? ] ¥}
E(k, ‘l’) =

~

(29

O . @

VIl — k%sin ] d,
The result is

y=2/[1 + kzj{(}‘;‘é - 1) . [F (kg)

(][] o

The value of (Ri/Rz)m, which appears in
equation (14), may be also expressed in terms of
the quantity %, given by equation (27). Namely,
it follows from equation (22) in connection
with (27) that
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sfi- JBE]) o

=14+

whence
R1)
1+ ( Rz

31\2 I — k%]\2
beft ) (- Yl e
It can be seen that for k = 0 it is b = 0, and
substitution k = 1 yields b = §. Thus
0<k<L

The relationship (30) may be transformed by
use of equation (27); we obtain

e (ol
{2 e s3] o0

8§~ V[ + k7

This relationship is shown in Fig. 4. Using
equations (14), (27), (32) and (33) we may find
the function

P = ¢ RpAT
( R )versus 5
this is shown in Fig. 5, and the relationship
b/R; vs. R./8 as well.

Now, the ratio R./8 is the dimensionless
temperature gradient VT, since

4
vr =41 (34)
8
whence
Re RNT
5 = AT 63

If the liquid is uniformly superheated, it is
8 = oo and the nucleus is activated at

4T = 4T,

If for instance R./8 = 3 we obtain from the
graph in Fig. 5
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p'=p" RepAT
F 2

= 466

wherefore the nucleus may be activated at
AT = 4-664T,. The supposed mechanism of the
waiting period is therefore as follows,

At the moment of bubble departure from the
active cavity the temperature gradient may be
small. The starting bubble leaves a vapour
nucleus of radius R. (for ¢ = #/2). As the
result of bubble motion the colder liquid comes
nearer to the wall, so that the temperature
gradient grows, and the nucleus decreases due
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to condensation, thereby becoming flatter.
Now, since the wall is held at the same tem-
perature, the liquid grows warmer, and the
temperature gradient decreases thus allowing the
activation of the nucleus, consisting in spon-
taneous growth of it.
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Résumé—On suppose habituellement que les germes des bulles de vapeur dans Pébullation en réservoir,

sont des sphéres de Rayon Ry, dont la valeur dépend de la surchauffe du liquide. On montre dans cet

article que le germe de vapeur n’est une sphére que dans le cas d’une surchauffe uniforme. $’il yaun gra-

dient de température. le germe d’une bulle active prend une forme aplatie. En conséquence, la sur-

chauffe du liguide & la paroi nécessaire pour P’activation est plus grande que dans le cas d’une sur-
chauffe uniforme.

Zusammenfassung—Die Keime von Dampfblasen beim Sieden in freier Konvektion werden gewdhn-

lich als Kugeln vom Radius R, angenommen, deren Grisse von der Uberhitzung der Fliissigkeit

abhéngt. In der vorliegenden Arbeit wird gezeigt, dass der Dampfkeim nur im Fall gleichmissiger

Uberhitzung eine Kugel ist; bei einem Temperaturgradienten ist der aktive Blasenkeim abgeflacht. Als

Folge davon muss and er Wand die notwendige Fliissigkeitsiiberhitzung zur Aktivierung grosser sein
als bei gleichmissiger Uberhitzung.
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Anpporanus—OGEHYHO CUMTAeTCA, 4YTO AApPA NYySHIPbKOB [apa NPH KHUMEHNY B GOJBIIOM
ofneMe 1peACTaBAAIT cobolt cheps paguyca R. BeJIUYMHA KOTODHIX 3aBHCHT OT CTEIeHH
meperpeBa MUAKOCTH. B crarhe nmokasaHo, 4To AJPO NYSHpPBKA Iapa HMeerT CepHIeCKyIo
dopMy TOMBKO B CIyuae pABHOMEPHOro neperpesa. [Ipn Haau4uyu TeMnepaTypHOro rpagueHTa
AKTUBHHE MY3HPbKU crunommBalorca. [Toatomy gua aktTuBamun tpebyerca 6onabian creneHb
nieperpepa KUJIKOCTH HA CTEHKE HO CPABHEHUIO CO CIydaeM PaBHOMEDHOTrO Neperpeea.



