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Abstract--The nuclei of vapour lxtbbles in pool boiling are usually assumed to be spheres of radius 
Rn, the value of which depends upon the superheat of liquid. It is shown in this paper that the vapour 
nucleus is a sphere only in the case of uniform superheat. If there is a temperature gradient the shape 
of the active bubble nucleus is flattened. As a consequence the liquid superheat at the wall needed for 

activation is greater than in the case of uniform superheat. 

NOMENCLATURE 

b, height of the nucleus; 
k, a parameter, equation (27); 

PY pressure; 

PS, = (@+WT=T~; 

I;iC, 
co-ordinate; 
radius of the cavity; 

& radius of the vapour nucleus; 
RI, Rz, main radii of curvature of the vapour 

nucleus; 
T, temperature of the liquid; 
T8, absolute saturation temperature; 
AT, superheat at the heated surface; 
VT, temperature gradient at the heated 

surface; 

;: 
co-ordinate; 
contact angle; 

Y9 a parameter, equation (14); 
6, boundary-layer thickness; 
8, characteristic superheat of the nucleus; 
P’, P”, mass densities of the liquid and of the 

vapour, respectively; 
(J, surface tension; 
% angle between the surface of the 

nucleus and the heated surface, at the 
heated surface. 

IN POOL BOILING the working period of an active 
site on the heated surface consists of two parts. 
In the first the vapour bubble is formed from the 
initial nucleus. After the departure of the grown- 

up bubble the site is not active for a while, and 
this period is called the waiting period. To 
explain this phenomenon Hsu [I] has proposed 
a model in which a vapour nucleus of radius R,, 
seated on the cavity of radius R,, begins to be 
active (that is, begins to grow) at the moment 
when the temperature of the surrounding super- 
heated liquid exceeds the temperature of the 
characteristic superheat 0 due to the radius of the 
nucleus R,,, 

e 
2a P’ =------. 

P:% pl’* 

After the departure of the bubbIe the colder 
liquid approaches the wall. During the waiting 
period the superheat of the liquid is initially 
below the value 0 at the place y = b, which the 
vapour nucleus reaches (see Fig. 1). Therefore 
the bubble does not grow, unless the superheat 
at the place y = b exceeds the prescribed value 8. 

HSU’S hypothesis is a good explanation of the 
existence of the waiting period, but has no 
physical basis. One must ask why the activation 
of a nucleus is governed by the superheat at the 
place y = b, and why not at y = 0, that is on 
the heated surface. 

Note that the radius of the active nucleus is 
evaluated from the formula (l), which is strictly 
valid for uniform superheat of the liquid only. 
Namely, the expression (1) is the solution of the 
Laplace equation 
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FIG. 1. 

p’ - p” Ap -.- 
P' a 

=+;+; 

in which we put 

Ap w p;(T - Ts) 

(2) 

(3) 

For T = const. and (T - T8) = const. = 8, the 
nucleus is spherical, that is RI = Rz = Rn, and 
equation (1) is obtained. In the conditions of 
pool boiling, however, the temperature of the 
liquid is a function of space and time, as pointed 
out by Hsu [l]. Thence the temperature difference 
(T - T8) varies with the co-ordinate y and 
influences the radii of the active nucleus, which 
depend therefore not only upon the superheat 
at the wall (which may be assumed constant), 
but also upon the temperature distribution in the 
vicinity of the active site (the cavity), and 
consequently upon the momentary heat flux, or 
temperature gradient, at the heated surface. The 
greater the temperature gradient at the wall, the 
greater must be the radius of the cavity to 
produce bubbles, even at constant superheat of 
the wall. 

To analyse the phenomenon we put 

Ap w pi. (T - Ta) = pi - ATtY(y) 

where 

(4) 

T - T8 
NY) = AT 3 ___ 6(O) = 1 (5) 

Using the expressions for the main radii of 
curvature : 

Rl= -I y, (1 + y’T’2, 

R2 = - $1 + y’s)r’a (6) 

where y’ = dyldr, y” = day/d+, we obtain from 
equation (2) 

P” P:AT P' - 
I, 

P' 
* a- '(y) = (1 ,y,‘2)3/2 

-Y’ --~ 
+ r(l + Y’~)‘/~’ (7) 

The boundary conditions, which follow from the 
sketch in Fig. 2, are 

y(W = 0, Y'(&> = @p, y'(0) = 0 (8) 

We confine ourselves to the analysis of the case 

V = 42. The angle q, as it can be seen from 
Fig. 1, is usually different from the contact angle 
/I; it has to do with the microgeometry of the 
heated surface. 

In the case of p = 42 and uniform superheat 
of the liquid (8 = 1) the nucleus forms a hemi- 
sphere of radius Rn = Rc, and height b = Re. 
If 6(y) G 1 the shape of the nucleus resembles a 
flattened spheroid. For a. real spheroid we would 
obtain 

and the ratio of the radii of curvature, 

RI ~‘(1 + y’? 
- = --- --,-, 
R2 

~=l- 
v 

FIG. 2. 
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varies from Rr/Rs = 1 at the top (r = 0) to From these equations the value of b should be 
RI/& = b2/R,” at the base (r = &). The eliminated and as a result we obtain the re- 
arithmetical mean of the discussed ratio is lationship R, = f(y/Rc). Note that for 9 = 1 the 
therefore result is y = 1, which leads to the formula 

We will solve the problem approximately using where for 91 = 7r/2 it is R, = Re = b+ 
instead of equation (2) the simplified equation To discuss the case S(y) < 1 we must assume 

a defined tern erature 
(12) mathematical ifficulties we analyse the simplest cf 

distribution. To avoid 

case, as shown in Fig. 3. Thus 

or 
Rcy” ___-- - Yqy) = (1+ y’2)3/2 

where 

(13) 

p’ - p” ReprAT 1 
Y=- . -a__ , _ 

P’ 0 1 + (~d&hn 
(14) 

9= 1-g fory<&; 

1 

(20) 
6=0 for y > 6. 

Putting y’ = U, y’ = u du/dy, we obtain by I 

integration h 
Y 

F 8 dy + const. = J 1 
(1 + y’2)1’2 (15) c 

0 

where const. = 0, which follows from the 
boundary conditions (8) for v = r/2. Thus 

y’ =$= - */[(j$Ydy!” - I] (16) 

and 

0 FIG. 3. 

Y 

r= dy The following considerations are valid for 
&- --1__ J 0 l/KrlRc .[a dy)-2 - l] 

(17) b < 6 only. Therefore 

b 

where conditions (8) are already taken into J Bdy=y-; (21) 

account. If r = 0, that is y = b, it follows 0 

y' = 0, whence and 
b 

Rc = J dY 
(18) (22) 

o v’WRC s” 6dYF2 - 11 
0 

We use a new variable t, satisfying the equation 
b u 

w 
s 

9 dy. (23) 

0 

; Sdy=I 
C s 
0 
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Hence 

and 

2% tdt whence 

dy = - -r * 141 - W’WW(l - t2)j (24) 1 + 3 = I + 

Introducing (23) and (24) into equation (18) we 11 R2, na 

get finally after some rearrangement 

1 

Y 2 = 
s 

(1 - t2) dt 

&+{I-+ (;)z. (l- ,/[&;]r) (32) 

-. 
142 - t21 v’[l - Wb/+) (1 - t2>l * (25) It can be seen that for k = 0 it is b = 0, and 

0 substitution k = 1 yields b = 8. Thus 

Using furthe~ore the Legendre substitution O,<k<l. 

t = 2/2.cos$ (26) The relationship (30) may be transformed by 

and introducing the quantity use of equation (27); we obtain 

-112 

we obtain from equation (25) 

(27) 2 = -&+-@I . @ - k2> k (k, 9) 

- F (k,;)] - 2. k (k,;)- +;)]) (33) 
d2 

Y -.- 
(28) This relationship is shown in Fig. 4. Using 

equations (14), (27), (32) and (33) we may find 
the function 

This integral may be expressed in terms of the 
elliptic integrals of first and second kinds 

Etk $4 = J y’[l - k2 sins $1 d$, 

0 J 

The result is 

( P' - P" QYT _-- “erSUS EC. 
p’ + 2a ) 6’ 

this is shown in Fig. 5, and the relationship 
b/& vs. R,/S as well. 

Now, the ratio &]S is the dimensionless 
temperature gradient VT, since 

whence 

-F(k,%)J -+(k,;)-E,(k,;)]} (30) ‘=‘%? 
(35) 

If the liquid is uniformly superheated, it is 
The value of (RI/R~)~, which appears in S = co and the nucleus is activated at 
equation (14), may be also expressed in terms of 
the quantity k, given by equation (27). Namely, 

AT = AT,. 

it follows from equation (22) in connection If for instance R&S = 3 we obtain from the 
with (27) that graph in Fig. 5 
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FIG. 4. 

wherefore the nucleus may be activated at 
AT = 466AT,. The supposed mechanism of the 
waiting period is therefore as follows, 

At the moment of bubble departure from the 
active cavity the temperature gradient may be 
small. The starting bubble leaves a vapour 
nucleus of radius R, (for ‘p = 42). As the 
result of bubble motion the colder liquid comes 
nearer to the wall, so that the temperature 
gradient grows, and the nucleus decreases due 

to condensation, thereby becoming flatter. 
Now, since the wall is held at the same tem- 
perature, the liquid grows warmer, and the 
tem~rat~e gradient decreases thus allowing the 
activation of the nucleus, consisting in spon- 
taneous growth of it. 

u) 
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FIG. 5. 
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R&m&-On suppose habitueIlement que Ies germes des bufles de vapeur dans I’~builation en reservoir, 
sont des spheres de Rayon R,, dont la valeur depend de la surchauffe du liquide. On montre dans cet 
article que le germe de vapeur n’est une sphere que dam le cas dune surchauffe uniforme. s’il yaun gra- 
dient de temperature. le germe dune buile active prend une forme aplatie. En consequence, la sur- 
chauffe du liquide a la paroi nkessaire pour I’activation est plus grande que dans le cas dune sur- 

chauffe uniforme. 

Zusannnenfassung-Die Keime von Dampfblasen beim Sieden in freier Konvektion werden gewtihn- 
Iich aIs Kugeht vom Radius Rr ~geno~en, deren G&se von der ~~r~tzung der Fliissigkeit 
abhangt. In der vorhegenden Arbeit wird gezeigt, dass der Dampfkeim nur im Fall gleichmiissiger 
%xhitzung eine Kugei ist ; bei einem Temperaturgradienten ist der aktive Blasenkeim abgeflacht. Als 
Folge davon muss and er Wand die notwendige Fhissigkeitstiberhitzung zur Aktivierung grosser sein 

als bei gleichm5ssiger Uberhitzung. 



300 J. MADEJSKI 

AEEOT~~H~-~~LIWIO c4nTaeTcfi, 'ITO unpa nyanpbKoB napa npn Kanemn B 6OJXbIUOM 

obxeme npe~cTaBnmoT co6ot c@phI pwayca Rn BemiwHa KOTO~~IX 3aBnCnT OT CTenem 

neperpesa HCIIAK~CTH. B cTaTbe noKaaaH0, 9~0 typo nyablpbKa napa nMeeT c@epnsecKya 

~OpMyTOJrbKOBCJIyYaepaBHOMepHOrO~eperpeBa.~p~Ha~n~nnTeM~epaTypHOrOrpa~IleHTa 

aKTnBHble nyabIpbKnCnnIo~HBaIoTCR..nOeTOMyHnR aKTnBa~nnTpe6yeTCH 6oJIbmaflCTeneHb 

neperpesa ~HAKOCTM Ha cTeHKe no cpaBHeKnw3 co cnygaenf paBHohiepKor0 neperpesa. 


